Erratum: Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe.
نویسندگان
چکیده
In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing. The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom, is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase. Here, we study FeSe (ref. )-which exhibits a nematic (orthorhombic) phase transition at Ts = 90 K without antiferromagnetic ordering-by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on cooling through Ts. A sharp spin resonance develops in the superconducting state, whose energy (∼4 meV) is consistent with an electron-boson coupling mode revealed by scanning tunnelling spectroscopy. The magnetic spectral weight in FeSe is found to be comparable to that of the iron arsenides. Our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.
منابع مشابه
Effect of nematic ordering on electronic structure of FeSe
Electronically driven nematic order is often considered as an essential ingredient of high-temperature superconductivity. Its elusive nature in iron-based superconductors resulted in a controversy not only as regards its origin but also as to the degree of its influence on the electronic structure even in the simplest representative material FeSe. Here we utilized angle-resolved photoemission s...
متن کاملOrbital-driven nematicity in FeSe.
A fundamental and unconventional characteristic of superconductivity in iron-based materials is that it occurs in the vicinity of two other instabilities. In addition to a tendency towards magnetic order, these Fe-based systems have a propensity for nematic ordering: a lowering of the rotational symmetry while time-reversal invariance is preserved. Setting the stage for superconductivity, it is...
متن کاملWhy does undoped FeSe become a high-Tc superconductor under pressure?
Unlike the parent phases of the iron-arsenide high-Tc superconductors, undoped FeSe is not magnetically ordered and exhibits superconductivity with Tc approximately 9 K. Equally surprising is the fact that applied pressure dramatically enhances the modest Tc to approximately 37 K. We investigate the electronic properties of FeSe using 77Se NMR to search for the key to the superconducting mechan...
متن کاملCharge-induced nematicity in FeSe.
The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is one of the most intriguing properties of the iron-based superconductors (Fe SC), and has relevance for the cuprates as well. Establishing the critical electronic modes behind nematicity remains a challenge, however, because their associated susceptibilities are not easily accessible...
متن کاملMagnetic ground state of FeSe
Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature materials
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2016